

Klinikum Veterinärmedizin Klinik für Kleintiere - Chirurgie der Justus-Liebig-Universität Gießen

Biologische Strahlenwirkung

Sebastian Schaub

Dres. vet. med., Dipl. ECVDI, FTA für Radiologie, FTA für Klein- und Heimtiere

K. von Pückler, N. Ondreka, A. Hartmann

1

Dosis

- (Energie-)Dosis
 - Absorbierte Energie pro Masse
 - Einheit: Gray [Gy]
 - 1 Gy = 1 Joule/kg

Dosis

- Energiedosis aus praktischen Gründen nicht direkt gemessen - Ionisation
- Über Hilfsgrößen Ionendosis oder Kerma bestimmt

3

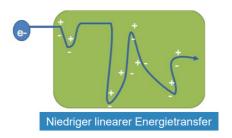
Dosis

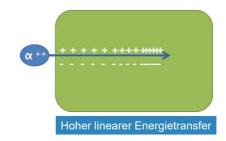
- Energiedosis kann biologische Wirksamkeit der Strahlung im Körper nicht ausreichend beschreiben
- ${lpha}$ -Strahlung 20-mal höhere biologische Wirkung (für stochastische Effekte) als ${f \gamma}$ -Strahlung bei gleicher Energiedosis

Äquivalentdosis

H= Dosis $x \omega_R$

- Produkt aus Energiedosis und Qualitätsfaktor/Strahlungs-Wichtungsfaktor (ω_R)
- Einheit: Sievert [Sv]


5

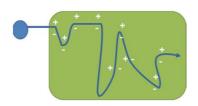

Äquivalentdosis

STRAHLENART	WR
RÖNTGEN- UND GAMMASTRAHLEN	1
BESTRAHLUNG	1
NEUTRONEN JE NACH ENERGIE	5-20
ALPHASTRAHLUNG	20

Äquivalentdosis

- Nicht jede Art von Strahlung verursacht den gleichen biologischen Schaden
- Grund: Energieübertragung auf durchstrahltes Gewebe abhängig von der Art der Strahlung

7

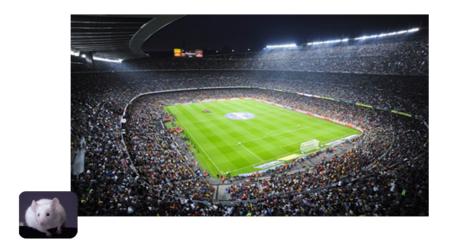

Strahlenarten

STRAHLENART	MASSE	ELEKTRISCHE LADUNG	GESCHWINDIGKEIT
α	Ziemlich hoch	Zweifach positiv	relativ gering
β	Ca. 8000x leichter als α -Teilchen	Einfach negativ	kleiner als Lichtgeschwindigkeit
γ	Keine	Keine	Lichtgeschwindigkeit

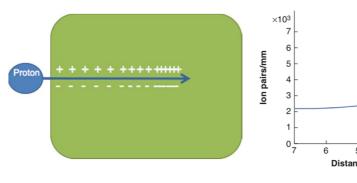
Strahlenarten

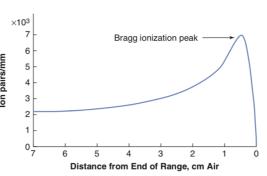
Röntgen- und Gammastrahlen

- Interaktion mit Materie über langen Weg
- Allerdings nicht besonders dicht geringer Energietransfer auf Gewebe



9


Strahlenarten


Rontgen- und Gammastranien

Strahlenarten

- Schonender als Röntgentherapie
- Energieabgabe findet in eng begrenztem Bereich statt und nicht schon auf dem Weg zum Ziel

11

Strahlenarten

Protonenstrahlung

Effektive Dosis

- Aufsummierung der Organdosen, die mit dem zugehörigen Gewebe-Wichtungsfaktor multipliziert wurden
- Die effektive Dosis ist ein Maß für die Gesamtkörperdosis unter Berücksichtigung der unterschiedlichen Strahlenempfindlichkeit der Organe und Gewebe für stochastische Strahlenwirkungen.
- Einheit: Sievert [Sv]

13

Effektive Dosis

- Nicht jedes Gewebe ist gleich strahlenempfindlich
- Gewebespezifische Wichtungsfaktoren (ωT) von Internationalen Strahlenschutzkommission

Organe und Gewebe	
<u>Keimdrüsen</u>	0,08
Knochenmark	0,12
<u>Dickdarm</u>	0,12
<u>Lunge</u>	
<u>Magen</u>	0,12
<u>Blase</u>	0,04
<u>Brust</u>	0,12
<u>Leber</u>	0,04
<u>Speiseröhre</u>	0,04
<u>Schilddrüse</u>	0,04
Haut	0,01
Knochenoberfläche	0,01
<u>Speicheldrüsen</u>	0,01
<u>Gehirn</u>	
übrige Organe und Gewebe	
Summe	1.00

Effektive Dosis

Organe und Gewebe	ωτ
<u>Keimdrüsen</u>	0,08
<u>Knochenmark</u>	0,12
<u>Dickdarm</u>	0,12
<u>Lunge</u>	0,12
<u>Magen</u>	0,12
<u>Blase</u>	0,04
<u>Brust</u>	0,12
<u>Leber</u>	0,04
<u>Speiseröhre</u>	0,04
<u>Schilddrüse</u>	0,04
Haut	0,01
Knochenoberfläche	0,01
<u>Speicheldrüsen</u>	0,01
<u>Gehirn</u>	0,01
übrige Organe und Gewebe	0,12
0	4.00

15

"Banana equivalent dose"

ANZAHL BANANEN	EQUIVALENTE EXPOSITION
100.000.000	Fatale Dosis (Tot innerhalb von 2 Wochen)
70.000	Thorax CT
20.000	Einzelne Mammographieaufnahme
200-1.000	Thoraxröntgen
700	Für ein Jahr in einem Gebäude aus Stein/Zement/Ziegeln wohnen
400	Flug Frankfurt - New York
100	Tägliche natürliche Strahlenbelastung
50	Zahnröntgen
1-100	Jährlich Dosis in der Umgebung eines Kernkraftwerkes

Zusammenfassend

- Äquivalentdosis: Größe des strahlenartspezifischen Schadens [Sv]
- Effektive Dosis: Größe zur Bestimmung des strahlenartspezifischen & organspezifischen Schadens
- Werden nur unterhalb der Schwellenwerte für deterministische Strahlenwirkungen verwendet

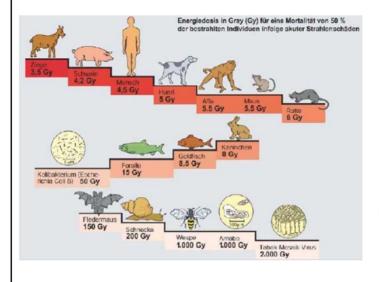
17

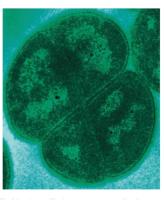
Zelluläre Wirkung

- · Abhängig von der Strahlenart
- Abhängig vom "Wirkort"
- Mutation
- Transformation
- · Verlust der Teilungsfähigkeit

Subzelluläre Wirkungen

- · Direkte Wirkung auf die DNA
- Veränderung der Chromosomen
- Indirekte Wirkung
 - Bildung von "freien Radikalen"


19


Dosiseffekte

GANZKÖRPER DOSIS IN GRAY	FOLGE
100	Tod durch cerebrovaskuläres Syndrom in 1-2 Tagen
10	Tod durch gastrointestinales Syndrom in 5-10 Tagen
LD ₅₀ bei jungen gesunden N 2-5	lenschen: 3-4 Gy Hämatopoetisches Syndrom

>10.000 Gv

21

Deterministische Effekte

- Wirkung aufgrund von massivem Zelluntergang
- Die Größe des Effekts ist abhängig von der Dosis, es exisitiert ein Schwellenwert
- Es existiert eine Schwellendosis, unterhalb derer eine Wirkung vollkommen ausbleibt (2 Gy als genereller Schwellenwert

DOSIS IN GRAY	FOLGE
2	Erythem
3-5	Vorübergehender Haarverlust
7	Dauerhafter Haarverlust
10	Desquamation

Deterministische Strahlenschäden können im Strahlenschutz

Deterministische Effekte

23

Stochastische Effekte

- Haben keinen Schwellenwert, Wirkung durch Schädigung einer Zelle möglich
- Wahrscheinlichkeit steigt mit der Dosis
- Eintritt jederzeit möglich
- Ausprägung des Effekts unabhängig von Dosis
- Keine Schwellendosis

Für stochastische Strahlenwirkungen gibt es keine Dosis, unterhalb derer die Strahlung völlig unwirksam bleibt!

Stochastische Effekte

Risikoerhöhung an Krebs zu erkranken

- 1 Sv ≈ 5% höheres Risiko
- 20 mSv ≈ 1 ‰ höheres Risiko

25

Kurioses

- Tsetsefliege
 - Strahlensterilisation der Männchen

- Bekämpfung durch Aussetzen von strahlensterilisierten Männchen
- Cryptococcus neoformans und Wangiella dermatitidis
 - Unter Einwirkung von Strahlung erhöhte Stoffwechseltätigkeit
 - Melanin als Redoxpuffer -> damit Anpassung an extreme Umweltbedingungen

Personendosimetrie

- Amtliches Dosimeter z.B. OSL oder Filmdosimeter
- Im Kontrollbereich zu tragen
- Ermittlung der Körperdosis
- Auswertung durch amtliche Dosimeter-Auswertstelle
- Mitteilung ermittelter Dosis an verantwortlichen Strahlenschutzbeauftragten

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

27

Personendosimetrie

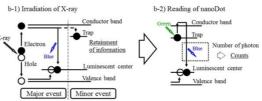
- Dünne Kunststoffkassette
- · Unterschiedlich dicke Metallfilter
- Röntgenfilm

Gleitschatten-Filmdosimeter-Sonde

- Betastrahlungsindikator
- Abschirmrahmen Richtungsindikator * Metallfilter

- Verschluss Film-Kontrollloch Typenschild-Aufdru Gleitschatten-Filter
- Plastikfilter
- Transparente Vorderseite
 (Deckel)
 Befestigungsclip
- In Vorderseite (Deckel) und Rückseite (Schale) gegeneinander versetzt

Typenschild:



Personendosimetrie

- OSL-Dosimeter (optisch stimulierte Lumineszenz)
- Amtliches Dosimeter
- Photonenstrahlung 0,1 mSv bis 10 Sv

29

Personendosimetrie

- · Amtlich nicht zugelassen
- Dosisbestimmung für z.B. Patientenbesitzer?
- (Schwangerschaftsüberwachung)

